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Background 

Abstraction of groundwater is a major stressor for terrestrial and aquatic ecosystems especially in 

countries like Denmark where close to 99% of the water supply is based on groundwater. During the past 

decades overexploitation in Denmark and many other places has resulted in deterioration of aquifers and 

poor status of receiving ecosystems. Recently, the first River Basin Management Plans (EU Water Frame-

work Directive) classified groundwater abstraction near the larger Danish cities to have severe sustain-

ability problems due to over pumping. Criteria’s in the first round were related to median minimum flow 

reductions due to groundwater abstraction, typically with thresholds of max 5 % reduction (high status) 

and max 10-25 % reduction (good status), depending on rather old guidelines from 1979 by the Danish 

EPA for ecological goals for fish for various stream reaches (Henriksen and Refsgaard, 2013). 

Data bases with indicators for acceptable stream flow depletion for low flow are up till now the most 

common methods for assessing whether groundwater abstraction leads to unacceptable conditions for 

riverine ecosystems (Henriksen et al., 2008; Olsen et al., 2013). However, ecosystem conditions are 

known to depend on other factors than minimum stream flow (like median minimums flow Qmm, Q95 or 

Q90). For the second River Basin Management Plans in Denmark, DCE (former NERI) therefor developed 

a new model for the relationship between flow variables and index scores for three biological quality ele-

ments fish (DVFFa/61 sites), macro-phytes (DVPI/91 sites) and macro-invertebrates (DVFI/122 sites), 

based on an analysis of ecological and measured flow data from 2004 to 2010 (Graeber et al., 2014). The 

effect of physical condition of the sites was included by using the quality of the cross-sectional profile and 

sinuosity. The final models for the three quality elements included six other flow variables: Q90 (flow 

below 90th percentile), Fre1 (annual frequency of events above median discharge), Fre25 (annual fre-

quency of flows above Q25), Fre75 (annual frequency of flows below Q75), Dur3 (annual duration of ex-

treme flow events three times above median flow) and BFI (base flow index), (Graeber et al. 2014; Riis 

et al. 2008). GEUS implemented the new indicator for EU WFD RBMP2 for Denmark and even though 

median minimum flow Qmm was evaluated as having less importance (Graeber et al. 2014), this variable 

was used for screening of the most impacted reaches (based on 2700 stations defining ID15 sub-

catchments of approximate area of 15 km2), and also for analysing relationships between impacted 

reaches and 400 groundwater bodies (Henriksen et al. 2014). In addition to this, in some streams water 

quality and temperature, will depend on impacts on median minimum flow, so for various reasons this 

indicator has a regulatory importance, and is therefore included in the calculations. 

The approach is useful for highlighting where groundwater abstraction is likely to prevent full-filling 

good ecological status – taking physical conditions into account, and for designating sites, where it should 

be possible to establish how much abstraction must be reduced, or alternatively measures must be taken 

to improve ecological flows conditions. DCE derived the indicators for DVFI (macroinvertebrates), DVPI 

(macrophytes) and DFFVa (generalised fish index from Lithuania for three or more species) based on 

symbolic regression (EUREKA) - a genetic algorithm for identifying an optimal equation (in the formula 

SIN is the class of sinuosity (a value ranging from 1 to 4 where 1 is channelized river and 4 is meander-

ing river): 

DVFIEQR = 0.217 + 0.103*Sin + 0.020*Q90*Fre1        (R2 =0.44 based on 122 Danish sites) 

DVPIEQR = 0.546 + 0.020*Fre25 - 0.019*Dur3 - 0.025*Fre75       (R2 =0.49 for 91 sites) 

DFFVaEQR =0.811*BFI + 0.058*Sin + 0.050*Fre25 - 0.319 - 0.0413*Fre75 (R2 = 0.53 for 61 sites) 

The above equations are the best option for evaluating the ecological status for the three indicators. 

However, I want to play a bit around with these equations in the following Bayesian network analysis, in 

order to show how uncertainties can be added to these equations for integrated assessment purposes. 
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Based on the calculated values of DVFI, DVPI and DFFVa for the 61-122 stations and the observed values 

of DVFI, DVPI and DFFVa, and implemented model results with the national water resource model (DK 

model) for Q90 (dkQ90S), BFI (dkBFI) and Qmm (dkQmm) for the same stations, a dataset was prepared 

which was further analysed with HUGIN structural and EM learning tools. Hereby the Bayesian network 

shown in Figure 1 was developed and validated for the stations with observed DVFI, DVPI and DFFVa. 

 

Figure 1 Developed BN for integrated assessment of ecological status in Danish rivers 

In the final prototype Bayesian network all variables (except SIN which has four discrete states that can 

have the values 1-4) have been implemented as continuous variables. Hereby casual relationships e.g. 

that obsDVPI depends on Fre25, Fre75 and Dur3, where each variable is represented by a linear relation-

ships of mean values plus a constant, and assuming a normal distribution whereby uncertainties bounds 

(variance) is explicitly represented by the Bayesian network. For DVPI the formula on page 1 has been 

directly incorporated, since it is assumed that DVPI only depends on these three variables, and further-

more that macrophytes ecological state can been assumed as a parent variable for macroinvertebrates 

(DVFI) and fish (DFFVa), which is represented by the BN with the arrows to obsDVFI and obsDFFVa. 

This means that the constructed Bayesian network for DVFI and DFFVa is an alternative way of calculat-

ing ecological status compared to the equations for the three ecological quality elements shown on page 

1. The calculated results (mean values) will therefore differ from results obtained by the equations, and 

below I have tested the constructed Bayesian network against selected data (all stations with all there 

observed data). However, the main idea of the Bayesian network is to include the uncertainty assess-

ment, and also to provide a more holistic model, compared to the symbolic regression derived formulas 
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on page 1, e.g. a more integrated model, also honoring relationships (DVPI-> DVFI, DVFI-> DFFVa and 

DVPI-> DFFVa). Here I assume that the plants in the river, will positively affect habitat conditions for 

macroinvertebrates and fish, and also that a good status of macroinvertebrates will positively effect the 

status of fish. 

For DVFI where the formula assumes a multiplication of q90 and fre1 I can’t include this mathematical 

relationship in the Bayesian network, due to limitations when using continuous variables (only linear rela-

tionships are permitted). Therefore, the constructed BN do not fully incorporate the multiplication of q90 

and Fre1, and this will increase the uncertainty of the prototype. In the structural learning and EM learn-

ing (training of network with the 61-122 data which is available for the three indicators), I in addition to 

observed values and simulated DCE indicators, also included DK modelled data for the variables which is 

most accurately described by the DK model (dkQ90S, dkBFI, dkQmm), see Henriksen et al. 2014. I decid-

ed to skip the most uncertain DK modelled variables (Fre1, Fre25, Fre75 and DUR3). These frequency vari-

ables are typically underestimated by the national model compared to observed variables derived from 

observed time series. In the implementation as part of WFD RBMP2 this bias was compensated for by a 

bias-correction (Henriksen et al., 2014). When carrying out the structural analysis and EM learning varia-

bles with ‘high noise’ inaccurate variables are often not identified by the learning algorithm and therefore 

not included in the constructed networks unless inclusion their representations is forced by the expert. 

This was not done here. The analysis revealed that actually Qmm could be included, even though it did 

only add minor explanation, whereby a suitable linear relationship for calculating obs-DVFI was obtained. 

Hereby, it could be calculated by the Bayesian network by which degree the evaluated DVFI depends on 

the value of the median minimum flow. 

Since the equations for DVPI and DFFVa contains almost the same terms for x Fre25 – y Fre75. In the de-

veloped Bayesian network, these two variables only impact obsDVPI, but since DVPI is a parent to DFFVa, 

once the value of DVPI has been calculated by the Bayesian network, this subsequently impact DFFVa 

and the calculated ecological status for fish. 

Since the sin term already has been included in obsDVFI, this variable therefore in a similar way has a 

knock on effect on DFFVa through obsDVFI. Due to these already incorporated relationships, only the 

variable bfi (baseflow index - provide another parent variable to obsDFFVa) give direct input to 

obsDFFVa, all the other terms comes via DVPI and DVFI. In this sense the network is more integrated. 

The final network show that the result of the DK model variable (dkBFI) is mainly dependent on meas-

ured bfi but also slightly dependent on measured Dur3 (duration of events three times Q90). These ob-

served parent variables can translate measured bfi and dur3 to a distribution (update mean and vari-

ance) of dkBFI values. The same yield for dkQ90S (dkQ90/dkQ50), but here the relationship is directly 

translated by a linear combination with q90 as the single parent variable. 

The idea of the network is to enable an exploratory analysis and integrated assessment of the state of 

ecological flow variables. In the initial situation the network describe the overall results “in average” 

based on initial distributions of all variables based from the 61-122 sites. So the initial Bayesian network  

show distributions for all variables, but here the main uncertainty is due to the variability of the 61-122 

sites, and to a less degree measurement and model uncertainty, which first are analysed after having 

entered fixed mean values for the 8 observed variables (dur3, Fre1, Fre25, Fre75, Qmm, Sin, q90, bfi), see 

Figure 2. 

Due to the importance of the discrete variable (Sin) the probability distributions for obsDVFI and obs-

DFFVa reflect an impact of the discrete nature of Sin. Once sinuosity has been fixed, and other variables 

has been entered, the Bayesian network is updated and by use of Bayes theorem and now show a poste-

rior assessment of the three indicators obsDVFI, obsDVPI and obsDFFVa. 
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Entering evidence also affect the variance and the uncertainty bounds, and after entering site specific 

data for a station by the user, the Bayesian network now show the results of the three quality elements 

based on the entered 8 hydrological regime variables as evidence. 

Due to the ability of doing exploratory analysis by changing single or all hydrological regime variables by 

the user, the BN can analyse how a change due to groundwater abstraction (reduced or increased) will 

affect the three ecological flow indicators (obsDVFI, obs DVPI and obsDFFVa), by entering updated values 

of regime variables based on detailed model analysis. Below in Figure 2 an example is shown of the initial 

BN estimates of mean values and variance, and the normal distributions (within a window of 2*STD). 

 

 

Figure 2 Example with initial network showing calculated mean values and variance (show with monitor 

windows for all variables). For the initial network the uncertainty bounds reflect the overall variability. 

Inference with the constructed Bayesian network 

Inference is the act or process of deriving logical conclusions from premises known or assumed to be 

true. Let’s try to enter the following hydrological regime variables (for station 220062): 

Example A large downstream catchment in Jutland (220062) 

 Dur3 = 5 days 

 Fre75 = 6.56 (events per year below Q75) 

 Fre25 = 8.22 (events per year above Q25) 

 Fre1 = 8.22 (events per year above Q50) 

 dkQmm = 9.07 (m3/sek) 

 Sin = 3 (slightly meandering) 

 q90 (Q90/Q50) = 0.62 

 bfi = 0.84  

For example A the following observed data are available: DVPI = 0.46, DVFI = 0.87 and DFFVa = 0.95. 

From the DK model (new baseline Henriksen et al. 2015) the following results for 2004-2010:  dkQ50 = 

15.9 m3/s, dkFre1 = 7.14, dkFre25 = 6.85, dkFre75 = 5.42, dkQ90 = 0.64, dkBFI = 0.87 and dkDur3 = 

3.2. DK model has estimated dkQ25 to 22.5 m3/s and dkQ75 to 12.07 m3/s for 2004-2010. 
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Figure 3a Example St 220062 Estimated distributions of obsDVPI, obsDVFI and obsDFFVa after entering 

site specific knowledge for large river in Jutland 

As can be seen for example A the BN simulates the mean value for obsDVPI to 0.45 and the variance 

0.0004 (observed DVPI is 0.46). BN simulates obsDVFI to 0.98 with variance 0.03 (observed DVFI 

=0.87) and finally BN simulates obsDFFVa to 0.85 with variance 0.06 (observed DFFVa is 0.95). 

 

 

Example B small catchment on Sjælland (540002): 

 Dur3 = 9 days 

 Fre75 = 4.67 (events per year below Q75) 

 Fre25 = 7 (events per year above Q25) 

 Fre1 = 5.55 (events per year above Q50) 

 dkQmm = 0.0012 (m3/sek) 

 Sin = 1 (channelized) 

 q90 (Q90/Q50) = 0.08 

 bfi = 0.50  

For example B the following observed data are available: obsDVPI = 0.46, obsDVFI = 0.21 and obsDFFVa 

= 0.01. From the DK model the following results are available: dkQ50 = 0.035 m3/s, dkFre1 = 2.71, 

dkFre25 = 4, dkFre75 = 1.57, dkQ90 = 0.0385, dkBFI = 0.65 and dkDur3 = 15.1. Data for dkQ25 and 

dkQ75 has not been calculated in Henriksen et al. 2014. DK model has estimated dkDVPI = 0.49, dkDVFI 

= 0.23 and dkDFFVa = 0.35. 
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Figure 3b Example St 540002 Estimated distributions for obsDVPI, obsDVFI and obsDFFVa for small river 

from Sjælland 

Inference can be provided in case we want to investigate how much a change in Qmm for the station in 

example b would affect the DVFI and DFFVa indicators. If we increase Qmm from 0.001 m3/s to 0.050 

m3/s (~from 1 to 50 l/s), the updated BN reveals that an increase of Qmm to 50 l/s still most likely will 

result in an obsDVFI and obsDFFVa of 0.24 and 0.26. First if we increase Qmm to 500 l/s we can see a 

significant effect on the two quality elements since obsDVFI and obsDFFVa hereby both is increased to 

0.29. But this is still significantly below the good status limit threshold (threshold for DVFI is 0.71). Other 

variables or Sin need also to be changed in order to reach a good ecological status for this river site. Of 

cause all variable sensitive to changes in low flow especially q90 and fre75 would also change significant-

ly in case we increased the flow to 50 or 500 l/s, so these changes should be estimated by the model or 

expert elicitation. Since DVPI, DVFI and DFFVa are casually related (DVPI impact the two other variables, 

and DVFI impact DFFVa), measurement of DVPI can be valuable for a proper calculation of DVFI and 

DFFVa, and the Bayesian network allows such an analysis which is a strength of this assessment tool. In 

that case evidence is entered for obsDVPI. Since there is a lot of data for obsDVFI, this can also be en-

tered as evidence for stations where such data are available in order to updated the BN and reduce un-

certainties on estimates of obsDVPI and obsDFFVa. 

Since only a limited number of river stations in Denmark with observed discharge time series the above 

example of entering results of time series with complete daily discharge show how this information can 

reduce the uncertainty bound of the estimated DVFI, DFFVa and DVPI, compared to when using model 

results from DK model. It has been evaluated by GEUS that simulated values of dkFre1, dkFre25, 

dkFre75 and dkDUR3 should only be used for analyzing differences in simulated EQR values, not for esti-

mate of absolute values. This is the reason behind the Bayesian network where only variables that can be 

sufficiently accurately determined by the DK model e.g. dkQ90, dkQmm and dkBFI. But since a BN allows 

evidence to be entered for all variables, we can also enter data for stations where we have calculated 

estimates of the three variables from the DK model and including observed sin if available. In the follow-
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ing let us demonstrate this for example B. First we initialize the BN, and enter the following three varia-

bles as evidence: 

 sin = 1 

 dkQmm = 0.0012 m3/s 

 dkBFI = 0.65 

 dkQ90S= 0.0385 

Hereby the following estimates of other variables is estimated by the BN, see Figure 4. 

 

Figure 4 Example of entering evidence based on DK model for station without observed discharge 

Note that compared to Figure 3b (obsDVPI = 0.4, obsDVFI = 0.24 and obsDFFVa = 0.26), the BN has 

estimated obsDVPIdk model variable = 0.49, obsDVFI dk model variable =0.23 and obsDFFVa dk model variable = 0.35 

which still gives a relevant hint about the correct value, even though the variance due to the higher un-

certainty is higher compared to when using observed discharge data. Since the bfi, q90, fre1, fre25, 

fre75 and dur3 is also calculated, this gives the user an additional possibility to evaluate what can be 

expected in terms of the mean values of the frequency and duration variables. 

Try it out to learn more about which variables are the most important for good ecological status on the 

following HUGIN web-site, where you can enter sinuosity and either modelled flow data from DK model or 

flow data based on observed river flow from gauging stations in rivers in order to get an estimate of 

DVPI, DVFI and DFFVa: 

 

http://demo.hugin.com/example/EcologicalIndicators  

 

On the web-site a traffic light finally calculate the probability distribution derived from the modelled mean 

value and variance when using threshold values shown in Table 2. 

http://demo.hugin.com/example/EcologicalIndicators
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Table 2 Threshold values for DVPI, DVFI and DFFVa (Henriksen et al., 2014) 

Ecological status DVPI DVFI DFFVa 

High > 0.70 > 1.00 > 0.94 

Good 0.50 – 0.70 0.71 – 1.00 0.72 – 0.94 

Moderate 0.35 – 0.50 0.57 – 0.71 0.40 – 0.72 

Poor 0.20 - 0.35 0.43 – 0.57 0.11 – 0.40 

Bad > 0.20 < 0.43 < 0.11 

 

Validation test of constructed Bayesian network 

The table 1 below summarise the overall results of the DVFI-DFFVa-DVPI BNs compared to observed 

DVFI-DFFVa-DVPI and DCE calculated values (using formulas on page 1). 

Overall, the Bayesian network integrated assessment gives nearly equally valid results compared to DCEs 

model, so it is an alternative model with approximately same performance level. As can be seen from 

data for DVPI the two methods gives almost the same estimated values, due to the similar linear rela-

tionships for DVPI in the Bayesian network and in formulas on page 1. The R2 values of the BN for the 

stations shown in the table is 0.48 for DVFI, 0.38 for DFFVa and 0.42 for DVPI. 

 

There is also a need for further validation of new indicators based on time series of observed data.  

The developed prototype illustrates an example of a more comprehensive uncertainty analysis which this 

tool can provide. However, further work is required in order to turn the prototype into a practical tool for 

water managers. The possibilities of inference and of adding additional variables to the BN, which can 

provide assessment of changes in EQR values due to changed abstraction makes Bayesian networks a 

promising tool, especially if the exploratory analysis also can support dialogues with stakeholders, in or-

der to further advance the resource assessment, and to add adaptation measures like river restoration, 

water quality, temperature/trees, horizontal or longitudinal barriers for fish, and maintenance of rivers. 

Bayesian networks are ideal for handling the knowledge with explicit incorporation of uncertainty. 

 

The constructed prototype is evaluated as useful for strategic reasoning including exploring cumulative, 

joint uncertain impacts of various hydrological regime variables and proxy for physical index for evaluat-

ing ecological indicators and their uncertainty bound, when estimated from different datasets (dk model, 

observed time series of daily discharge data and/or in combination with observed values of DVFI, DVPI 

and DFFVa). What is known is updated using observations related to the decision at hand so the con-

structed BN can also be of value when used tactically for exploring what will be needed in terms of hydro-

logical regime variables, if a good status should be obtained, and to which degree changes in flow or 

physical index and due to groundwater abstraction might hinder good or high ecological status. It should 

be noted that high ecological status would require not only ecological flow, but also that the morphologi-

cal regime is near to natural, e.g. that Qmm is not changed more than 5 % and that other Q’s like Q75, 

Q25, Q50 etc. are also with only minor differences compared to natural conditions for river reaches with 

high status goals. 
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Table 1 Validation test of 35 stations with measurement of all three indicators (DVFI, DVPI and DFFVa). 

Comparison of results for BN model, observed EQR values and DCE simulated by use of equations. 

DMU no Sin 

DVFI 

BN 

DVFI 

obs 

DCE 

SIM 

DFFVa 

BN 

DFFVa 

obs 

DCE 

SIM 

DVPI 

BN 

DVPI 

obs DCE SIM 

20006 4 0.78 0.77 0.75 0.65 0.88 0.60 0.50 0.52 0.51 

80001 4 0.73 0.53 0.68 0.67 0.52 0.68 0.50 0.59 0.50 

100009 2 0.57 0.67 0.59 0.64 0.83 0.61 0.50 0.46 0.49 

100014 2 0.49 0.44 0.67 0.70 0.60 0.68 0.51 0.49 0.51 

110016 2 0.47 0.35 0.48 0.58 0.20 0.65 0.50 0.48 0.51 

150034 3 0.72 0.64 0.81 0.84 0.91 1.01 0.61 0.71 0.62 

150046 3 0.64 0.52 0.62 0.47 0.30 0.33 0.50 0.49 0.51 

150073 2 0.61 0.51 0.61 0.81 0.86 0.88 0.60 0.51 0.61 

150104 4 0.81 0.65 0.79 0.86 0.88 0.87 0.51 0.65 0.52 

150109 3 0.70 0.64 0.77 0.76 0.77 0.78 0.52 0.64 0.52 

160070 2 0.48 0.49 0.52 0.55 0.75 0.61 0.50 0.48 0.51 

210077 4 0.79 1.05 0.71 0.87 0.78 0.78 0.57 0.5 0.57 

220047 3 0.67 0.55 0.68 0.75 0.58 0.58 0.46 0.49 0.46 

220053 3 0.52 0.44 0.54 0.57 0.41 0.6 0.45 0.56 0.44 

220062 2 1.02 0.87 0.52 0.87 0.95 0.62 0.45 0.46 0.46 

250021 2 0.46 0.69 0.69 0.62 0.89 0.8 0.51 0.62 0.52 

250592 3 0.7 0.77 0.78 0.8 0.33 0.79 0.54 0.5 0.55 

250727 4 0.91 0.97 0.79 0.91 0.72 0.89 0.58 0.49 0.59 

310032 2 0.52 0.71 0.58 0.67 0.71 0.82 0.6 0.78 0.61 

310374 2 0.73 0.86 0.6 0.76 0.98 0.73 0.55 0.67 0.56 

370011 3 0.6 0.36 0.38 0.54 0.77 0.51 0.6 0.77 0.59 

380107 3 0.61 0.83 0.59 0.7 0.97 0.81 0.57 0.59 0.57 

500057 1 0.38 0.34 0.46 0.5 0.3 0.52 0.46 0.6 0.47 

510002 2 0.38 0.42 0.55 0.26 0.71 0.31 0.16 0.45 0.17 

520039 2 0.43 0.36 0.48 0.5 0.38 0.58 0.41 0.49 0.41 

520068 2 0.37 0.59 0.44 0.36 0.13 0.39 0.33 0.29 0.34 

530011 1 0.34 0.26 0.41 0.35 0.04 0.3 0.38 0.3 0.39 

540002 1 0.28 0.22 0.33 0.28 0.01 0.3 0.4 0.46 0.41 

550051 3 0.54 0.57 0.55 0.56 0.67 0.64 0.51 0.38 0.52 

560005 2 0.43 0.44 0.47 0.39 0.63 0.32 0.37 0.29 0.37 

570058 2 0.4 0.44 0.44 0.33 0.5 0.48 0.11 0.3 0.11 

570179 3 0.52 0.45 0.55 0.41 0.21 0.38 0.31 0.3 0.3 

570187 2 0.39 0.74 0.45 0.53 0.18 0.7 0.41 0.29 0.47 

580057 2 0.37 0.43 0.44 0.32 0.54 0.28 0.32 0.4 0.32 

600024 2 0.68 0.44 0.47 0.53 0.62 0.33 0.4 0.28 0.4 

           
We can now plot the calculated results by the symbolic regression equations (DCE) and the Bayesian 

Network (BN) as shown below and compare the results (Nash-Sutcliff R2) as shown below in Figure 4 (X-

axis modelled; Y-axis observed). 
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Figure 4 Observed DVFI, DFFVa and DVPI (y-axis) plottet against modeled DVFI, DFFVa and DVPI with 

Bayesian network (BN) and equations derived by DCE using symbolic regression (DCE).The two ap-

proaches have similar performance, with a bit higher R2 values for the Bayesian network N approach for 

the stations with all three observations shown in Table 1. 
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Discussion 

A Bayesian network has been constructed which enable an integrated assessment of ecological status for 

macrophytes (DVPI), macroinvertebrates (DVFI) and fish (DFFVa). Results are based on seven hydrologi-

cal regime variables and a proxy for physical index (sinuousity). Ecological flow sustainability is only one 

element in assessment of sustainable groundwater abstraction another element (not described here) is 

the aquifer sustainability assessment, where max 30 % abstraction compared to recharge is used as a 

screening criteria. 

 

The constructed BNs was based on monitoring data from Danish streams (NOVANA), and based on indi-

cators calculated for 2004-2011 (e.g. average conditions). It should be noted that groundwater abstrac-

tion can also affect groundwater dependent terrestrial or associated wet ecosystems and that small 

streams (75 % of all Danish streams) are considered as the most vulnerable to groundwater abstraction, 

and that the indicator for trout (DFFVø) first will be implemented in the third RBMP.  

 

The new indicators has been implemented by the national water resource model for ID15 subcatchments 

(subcatchments of approximately 15 km2), and the results has shown that there is a need for a ‘better 

geological/riparian model in case the uncertainty by the model shall be reduced (especially the frequen-

cies and the duration variables). Furthermore, a targeted calibration is needed, in order to provide a 

more accurate hydrological model and to reduce uncertainty bounds which are significant as shown. 

  

It has been demonstrated how the BN can be used in different ways to estimate DVPI, DVFI and DFFVa. 

Where observed data of sin, fre1, fre25, fre75, dur3, bfi and q90 are available this will give the best es-

timates of DVPI, DVFI and DFFVa. If there is also observed DVPI or DVFI or DFFVa these measurements 

can also be entered as evidence, in order to update the BN and to reduce variances and uncertainty 

bounds. Furthermore, if no observed DVPI, DVFI and DFFVa, data from DK model can be entered as evi-

dence for a estimate of DVFI, DVPI and DFFVa. Again, such estimates can be consolidated in cases where 

observed DVFI should be available, or DVPI or DFFVa, for determining the other two variables. 
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